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ABSTRACT

Except for particular examples which have fundamental
interest rather than engineering utility, exact solutions
to loading problems on three-dimensional lifting surfaces
have proved unobtainable even by small-perturbatian
methods. Beginning with the eminently successful lifting-
line idealization, there has resulted a proliferation of
theories embodying various physical and consistent or
inconsistent mathematical approximations. Nearly all of
these are now rendered obsolete by the general availability
of digital computation machinery with extraordinary speed
and capacity, because the best engineering approach is
now unquestionably through numerical treatment of the exact
linearized integral equation appropriate to the problem under
consideration.

A useful by-product of these developments is that
the erstwhile restriction to a single, isolated wing whose
mean surface lies close to one coordinate plane no longer
need be accepted. Integral representations car, be devised
for the coupled flow fields due to aggregates of lifting
surfaces, combinations of wings and bodies, or nonplanar
mean surfaces. A number of applications of this modified
approach to the phenomenon known as "interference" are
described, some including numerical results and comparisons
with experiment. Both steady flight and simple harmonic
oscillatory motions of small amplitude are included in the
examples. Those flows which involve an incompressible or
subsonic main stream are constructed by superposition of
properly-oriented doublets of acceleration potential; the
singular behavior of the integrals is handled in the same
manner as for a planar surface. In supersonic cases the
technique adopted consists of an extension of the concept
of velocity potential aerodynamic influence coefficients.
Specialization to sonic flight speed is discussed, but
here the linearization is permissible only when the motion
is unsteady.

The paper concludes with a review of related subjects,
such as the importance of coupling with flow produced by
wing thickness, the influence of a ground-plane, and
approximate means of accounting for second-order nonlinearity
in supersonic flight.



I. Introduction

Although typical flight vehicles consist of aggregates
of adjacent or intersecting lifting surfaces and bodies,
classical wing theory has dealt very largely with the
airflow around individual, almost-plane configurations
in uniform motion. As a consequence, there have been
developed various approximate schemes for piecing together
the classical solutions - methods that fall under the
heading of interference or interaction theory. With the
vehicle's motion known, the loading on each element of
the interfering system is initially estimated as if all
other disturbance sources were removed from the field.
Two types of correction are then applied. First, the
upwash pattern is computed at each lifting surface which
would be generated in its absence by other elements of
the system; applying this as an incremental angle of attack,
the additional loads are calculated by suitable linearized
theory. Second, the upwash due to other elements is
found along the centerline of each body. Applying this
as an incremental angle-of-attack distribution to the
body, loads are found, usually by some modification of
the well-known slender body theory. In steady-state
interference analysis, both of the foregoing steps can be
somewhat refined by extending any large, central body to
infinity and working at the Trefftz plane.

An excellent summary of prior literature and of
interference procedures along the lines just described
will be found in Ferrari's article (Ref. 1). Another
useful review of both subsonic and supersonic theory
has been published by Lawrence and Flax (Ref. 2). The
slender-body approach forms the basis of many contributions,
notably Refs. 3, 4, 5, 6 and 7.

Because of its author's interest in dynamic loading
and aeroelastic stability, the present paper is especially
devoted to streamlined interfering systems performing
small simple harmonic oscillations. Steady motion is
then included as a low-frequency limit. The literature
on such time-dependent flows over multiple surfaces and
wing-body combinations is surprisingly sparse. An
approximate study of the case of incompressible fluid
appears in Ref. 8, pp. 63-75. Statler and Easterbrook
(Refs. (9-10) have proposed methods for subsonic flight,
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and more recent second-order transonic and supersonic
theories for slender midwing-body combinations are described
by landahl (Ref. 1I) and others (e.g., Refs. 12 Rodden
and Revell (Ref. 23) have also discussed certain interference
problems.

Except for particular examples, such as supersonic
conical flow and the slender-body limit, exact three-
dimensional solutions have proved unobtainable even for
planar lifting surfaces in steady flight. This deficiency
has led, over the years, to the emergence of numerous
analyses embodying various physical and consistent or
inconsistent mathematical approximations, which are
detailed in the cited references and in several excellent
books now available on aeronautical aerodynamics. In
this connection, the present paper hopes to emphasize
two points. First, the bulk of these approximate methods
have been rendered obsolete, save for rough preliminary
estimation, by the wide availability of digital computation
machinery with extraordinary speed and capacity. Second,
the restriction to an isolated, planar wing no longer
need be accepted, because systematic integral representations
can be devised for the coupled flow fields due to very
general interfering systems. Of these observations the
former is not particularly original, but the latter has
not received the recognition which perhaps it deserves.
All of the discussion and numerical applications that
follow are designed to illustrate how coupled-flow problems
are set up and solved. It is hoped that the examples
will be adequate to demonstrate the feasibility of practical
realization.

The general framework for constructing mathematical
statements is by superposition of doublet and source-type
singular solutions of the appropriate differential equations
for small perturbations upon a uniform stream U parallel
to the positive x-direction. Except for occasional comments
about nonlinearities, therefore, linearized ideal-fluid
theory is employed throughout. In view of numerous
excellent published treatments (e.g. Chapter 1 of Miles,
Ref. 7), it hardly seems necessary to give extensive
details of the problem setup.

The basic dependent variables are the acceleration
or pressure potential

"V(~,=_ __- (1)
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and the disturbance potential 4 (x, y, z, t), defined
by stating that the total velocity potential of the
flow is

j5U + (2)

Here p is static pressure, ,o is density, and subscript oc
identifies properties of the remote stream. In terms
of Cartesian coordinates x, y, z (Fig. 1) and time t,
either qD or / is a solution of

;L -/ 1 o */< / (3)

M being the free-stream Mach number. The normal derivative
of V is specified over all wing and body surfaces, the
former being replaceable by the two sides of the wing's
mean surface. Physical variables must be continuous
external to the flight vehicle and its wake, and disturbances
must die out appropriately at large distances. The unique-
ness of solutions usually has to be assured by invoking
an auxiliary condition, such as the Kutta hypothesis of
smooth flow-off (continuous )V or 79 ) at all subsonic
trailing edges.

The information of practical interest, once the
problem is solved, usually consists of the pressure
distribution over all wing and body surfaces or some
weighted integral thereof, although occasionally other
characteristics of the field are required. Pressure can
be obtained from Y/ through Eq. (1) or from T , in most
cases, through the linearized Bernoulli equation

__-__. Z__ P (4)

In seady flow the dependence on t disappears. When the
perturbations are simple harmonic, all dependent variables
are replaced with their complex amplitudes ( 7 ) by
operations such as (R.P. "Real Part")

(x, y, z, t) = R. P. (x, Y, z) ) e

Also I±41is substituted for / t. The circular frequency
W)provides a measure of "unsteadiness" in a given problem
when converted to a reduced frequency

U.7 (6)
1 being a representative streamwise dimension such as
wing semichord or body length.
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II. Nonplanar Wings in Subsonic Plight

Consider small-amplitude vibrations of a lifting
surface S like the one illustrated in Fig. 1, letting
the free surface recede to infinity for the moment. In
the examples it is assumed that S has zero thickness.
In fact, when S happens to be almost plane, thickness
effects may be treated separately and independently
from those of angle of attack, camberetc. The same
decoupling can be accomplished in the unsteady loads
problem even for nonplanar wings. But it is not generally
possible in steady flow, and non-zero thickness must be
represented 'y distributing sources over S, which interact
with the doublets describing the lifting part of the
field. The procedure is straightforward and adds nothing
essential to the present dibcussion.

Superimposed on the mean-surface shape zo(y) in Fig. 1
is the small displacement

(x , , = 6 2 (X, Y) e(7)

the "real part" operation from Eq. (5) being henceforth
dropped. This gives rise to a normal displacement

7yi(x y)e t  , (Xy)e sec0(y) (8)

and to a normal velocity of fluid particles in contact
with S 6 C

(X +L /X (9)

vn must equal the normal derivative & for all points
x, y or x, s on S (s being a single-valued curvilinear
spanwise coordinate).

For subsonic flow, Y is chosen as the primary unknown,
since pressure discontinuities occur only through S and
the disturbance can therefore be represented by normally
oriented doublets of )v over the bounded area of the
wing. From the well-known relation between -Y and
it is easily shown that the principal boundary conditionreads x Z , . . , ,''

o(10)
for(x, y, z) on S'
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If a layer of p-doublets is distributed over S,
classical methods can be used to establish that the layer's
strength is locally proportional to the discontinuity
of 'Y , or of p. In incompressible flow, for instance,
Eq. (3) reduces to Laplace's equation, the doublet
singularity is simply a normal derivative of l/r, and
the solution becomes

- 7 Z_11

Here. , , -- are dummy variables replacing x, y, s
in the wing surface, while nI is the normal direction at
point _, , Zo (37) . Subscripts U and L denote "upper"

and "lower sides of S relative to the n direction (cf.
Fig. 1). Combining Eqs. (10) and (11) ylelds the
incompressible-flow integral equation

Cj~ _ e K/ (12)
(J

with the singular kernel function

- ~~ /at~ (yYt A- -J (13)

The double integral of Eq. (12) is to be evaluated
in the sense of Mangler (Ref. 13), the principal singularity
being associated with a factor (y - )-c. After some
manipulation, which generalizes the work of Watkins,
Runyan and Woolston (Ref. 14), a suitable working form
of the kernel function is found to be
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Here Ii, Ki and Li are modified Bessel and Lommel
functions in standard notation. The auxiliary symbols
are as follows:

X0 X> - Y Y 2 2Y

A generalization of the kernel function to include
the influence of Mach number in subsonic compressible
flow has been derived, but space considerations prevent
reproducing it here. Several reformulations of Eq. (12)
for special physical situations are discussed below:

a.) Pair or collection of non-intersecting lifting
surfaces. In this case a boundary condition like
Eq. (12) would be written for each surface and would
contain integral terms on the right equal to the
total number of surfaces, only the term representing
the influence of a particular surface on itself
involving a singular integration. One is thus
required to solve a system of coupled integral
equations for[pL - Pu ] over all the interfering
elements. K will have essentially the same form
as Eq. (14) in all terms. The surfaces do not have
to be plane or parallel.

b.) Intersecting lifting surfaces. This problem diff:,,s
from the one described under a.) only because pL
and pu on a surface may be discontinuous through
the station where it is intersected by another.
The solution procedure described below must be
modified to permit these Jumps but to assure continuity
of pressure as the corner is turned from one surface
onto another.

c.) Effect of a ground plane. By the well-known image
principle, a ground plane (cf. Fig. 1) is accounted
for by adding to the field an image which is
loaded in a sense symmetrical to the original wing.
The effect can be introduced as an additive correction
to K in the single integral of Eq. (12).
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d.) Effect of a free water surface on an oscillating
hydrofoil running at high Froude number F = U/if .
The boundary condition of constant pressure at
the free surface z = d (Fig. 1) is known to
reduce to 4D = 0 when F>>1. This condition is
met by loading the image in a sense antisymmetrical
to the original wing, that is, by makin f Ff i
the same at corresponding points. The upper
surface is the positive z-side in each case. Again,
an additive correction to K appears in Eq. (12).

The steady-flow simplification of the kernel
function is substantial:

2sKo /4[=(Y)+ 0),jJ S f*7 -O x°03k LX 0  ]

-Co (o s9()Y 2021l- X. [Z +x Y.
k-- 4  +3 ZZ (16)

The influence of Mach number in steady motion can be
handled most simply by means of the Prandtl-Glauert
compressibility correction.

Regardless of the physical circumstances, the numerical
procedure which has been found most effective for solving
integral equations like Eq. (12) is the same, a direct
outgrowth of Watkins' development (Ref. 15) for planar
wings. The key idea is to approximate LPL - Pu with
a rapidly-convergent series of functions which give the
right leading-edge singularity, fulfill the Kutta
hypothesis along the trailing edge, and also drop to zero
with the correct infinite slope along side edges. If
the wingtips are located at x = * B/2, one introduces
the following variables to transform S onto a rectangle
between S- -1, +1 and - = 0, 7r:

(17)
2
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Here xT and xL are streamwise coordinates of the leading
and trailing edges, respectively. The pressure series
reads

8 /1_ _S2

LXr -XJ1 8
C-- Ot-I- as 5'

(Several series are, of course, needed for a system of
interfering surfaces.)

When Eq. (18) is inserted into Eq. (12), with dummy
integration variables, the integrals can be evaluated
numerically at a set of stations Cx, s)on the half-span.
For the assumed symmetrical planform shape, the loading
is divided into symmetrical and antisynmetrical portions
in a well-known way. Itegrations must be performed with
care because of the yo - singularity; the work of Ref. 15
has proved very useful in this connection. The results
may be cast in the matric form

Ea- /21,j {L -r uI* h (19)
Here f..j are column matrices, whereas EK] is a
square or rectangular matrix, whose complex elements are
integrals of the kernel weighted by individual terms in
the series, Eq. (18). One solves for the column {am}
of unknown coefficients by direct inversion or some %st-
squares technique. The load distribution comes from
Eq. (18), and generalized forces like lift and pitching
moment can often be expressed in terms of relatively few
of the anm. Clearly, all of these steps would be
unthinkable without high-speed digital computing machinery.
The IBM 7090 at Massachusetts Institute of Technology
is able, however, to solve one case of steady loading
on a nonplanar wing or of unsteady loading on a planar
wing in less than five minutes, nine to sixteen collocation
points on the half-span being employed.

It should be mentioned, in passing, that more
sophisticated schemes for solving Eq. (12) have been
proposed and deserve further examination in the case
of nonplanar surfaces. For instance, Hsu (Ref. 16 and
antecedents) adopts the series (18) but simplifies the
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integrations with a "natural" choice of collocation points.
Stark (Ref. 17) has been able to avoid certain difficulties
with rapidity of convergence by focussing on generalized-
force computation, using reverse-flow theorems, and
introducing least squares when applying the flow-tangency
boundary condition.

Illustrative solutions of Eq. (12) for a variety
of practical problems are presented by Figs. 2 through
7. In each instance the fluid is of constant density,
since most applications to date have been carried out
in connection with hydrofoil design. Many similar results
for plan surfaces in both compressible and incompressible
flow w~ll-e found in Refs. 18, 16, 17 etc.

Figure 2, adapted from a recent study of ground
effect by Saunders (Ref. 19) demonstrates the excellent
accuracy that can often bV obtained at low incidence
even on quite thick wings. The reader is directed to
Ref. 19 for sources and interpretation of the data.
Shown plotted vs. height above ground in chords, the
ordinate is dimensionless lift per radian of angle of
attack for three rectangular surfaces:

L _ds _(20)

The dimensionless nose-up pitching moments, associated
with these lifts, about a spanwise axis 25% of the way
back from the leading edge are graphed in Fig. 3. The
ground plane's influence is seen to cause an increase
in lift while displacing its center of action aft. As
an example of combined ground and non-planar effects,
Fig. 4 plots lift-curve slope for a V-wing at different
heights and dihedral angles.

Figures 5 - 7 concern oscillatory motion in the
presence of a free surface, 5 and 6 being taken from a
recent paper by the author and two colleagues (Ref. 20).
In Fig. 5, the vibration consists of a vertical
translation

Sz (xAy - h e ,(21)
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whilVig. 6 refers to nose-up pitch-angle displacement
Ze about the quarter-chord axis. The abscissa is
reduced frequency, Eq. (6), with length 1 chosen to
equal the semichord b. Being complex numbers, the
dimensionless aerodynamic loads are shown in magnitude
and phase-angle form, e.g.,

C4 C46/CL'- R#LC (22)

Froude number in Figs. 5 and 6 is assumed large enough
to permit use of the antisymmetrical image wing.
Geometrical characteristics are listed on the figures.

The calculations in Fig. 7, previously unpublished,
refer to the two-dimensional hydrofoil running at finite
Froude number. The integral of Eq. (12) is here replaced
by a single integration along the chord, but the kernel
function (Ref. 20) must account for the various trains
of surface waves set up by the motion. The important
parameter of this problem is

J(23)

One sees the singular behavior near kF2 = 0.25 that was
discuesed by Crimi and Statler (Ref. 21). F = 10 is
evidently large enough, however, to permit the infinite-
Froude-number approximation for practical reduced
frequencies.

No subsonic interacting systems containing bodies
have been successfully worked through by the methods of
this report. It is expected that recourse will have to
be taken to fundamental representations, in terms of
source and doublet solutions of the governing differential
equation distributed over all surfaces bounding the
flow. The circumstances where complete linearization
is permissible, especially for pressure calculation, are
by no means as clear as when only lifting surfaces are
involved. Although this may seem to be a very complicated
undertaking, yet it is dangerous to underestimate the
potential of digital computers for well-stated, highly
systematized problems. One need only call attention
to the pioneering achievements by Smith and collaborators,
of which Ref. 22 is an early example, on large-disturbance
incompressible flows around bodies of arbitrary shape
without circulation.
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III. Slender Configurations at Supersonic Speed.

When M> 1 the character of phenomena described by
Eq. (3) changes as a consequence of the inability of
signals to propagate upstream. Although it is still
possible to construct a kernel function for Eq. (12),
and important work has been done in this direction, the
author believes that a more fruitful approach to
interference problems lies via the inverted representation
of the solution and the meth'o7 of aerodynamic influence
coefficients (AIC's, Refs. 23 and 24).

The AIC scheme is founded on an artificiality that
brings about both a great deal of mathematical simplification
and some difficulty in physical understanding. This is
the use of source sheets, which produce symmetrical flow
with respect to the wing plane, in place of doublet
sheets having the expected lifting antisymmetry. A
necessary accompaniment to sources is the addition of
hypothetical "diaphragm" areas, whose purpose is to
isolate opposite sides of lifting surfaces while
ensuring that no load acts on regions which cannot sustain
it. Thickness effects are, incidentally, omitted also
from the present treatment of the supersonic case, but
they are easily superimposed as mentioned at the beginning
of Section II.

By way of introduction to AIC's, the procedure for
finding the flow due to a vibrating plane configuration
like that in Fig. 8 is briefly reviewed. The disturbance
potential at any (x, y, z) in the half=space z > 0 is
given by (Refs. 7, 23, etc.)

Here 13 / -1 ; w is proportional to source strength
per unit area and here equals the vertical velocity
induced by the source sheet Just above the surface.
The operator R. P. calls for taking the real part only
with respect to the change in sign of the quantity under
the radical. When this operation is performed,S reduces
to that portion of the wing-diaphragm area intercepted
by the upstream Mach cone from (x, y, z).
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As in the figure, wing and diaphragm are overlaid
tot-b closest possible approximation with elementary
areas ( b, by bl/O rectangles ) having diagonals parallel
to the Mach lines. In terms of the dimensionless quantities

Y/ 
(25)6,

Eq. (24) reads

S(X, , Y,/ )(26)

Now let it be assumed (as will be correct in the limit
bl-->O) that 2 is constant over each element and equal
to the value R2/ at the center. By placing the origin
at the foremost 'of these centers, -v and are caused to
be integers counting centers rearward and to the right
from this origin. The potential may be written

-7(P (x.Y> l ~ ,_ , V- (27)

where the sum is extended over all elements ahead of or
along the hyperbolic intersection between z = 0 and the
forward Mach cone. Making the substitutions

., y,-..-(28)

it is an easy matter to show that the AIC Jx 1 , y zl)
actually depends only on the relative posit on bet een
the "sending" area and "receiving" point. Indeed, it
can be expressed as
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IC Co (9

where .=(x 1  h and (y -7)

n a similar fashion, the velocity components

v -q~and ii at a field point can be obtained from

z2Z 1~)>~ ~(30)

X, J~~=i (31)

V and W being essentially y and z derivatives of the
quantity in Eq. (29). Formulas have been worked out
for numerically computing various AIC's along the lines
of Ref. 214, Although space does not permit discussing
all the complications brought on by Mach-come intersections,
the basic forms for "Ucu area elements are reproduced
below( V >c 0 z> o):

(32)

- /

~2 -I (33)

Cos'
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- 5 2-,/ f,-(t

V --I

(34A)

+l 2 P7 -cosiderations-1-n')

22e
/r=

(34B)

and 1 has the same form except that (u-1/2) Isreplaced 0yu + 1/2). Symmetry considerations can beused to establish that

In practice, the skgle integrals in Eqs. (32) - (34)must be evaluated by quadrature. This gives rise to noserious difficulties, and conveniently isolated computersubroutines have been successfully operated for each ofthe AICts (for example, by North American Aviation, Inc.*).

* Work of Andrew and collaborators, as yet unpublished.
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The use of AIC's for loading calculation on a p
wing is described, with rules based on extensive experience,
in Refs. 24. In most cases, all design information can
be determined from the distribution of T over the
planform, so that only Eq. (27) and the velocity potential
AIC (Eq. (33) with 1 = 0) are used. ZT(Xl, yl, 0) is
calculated sequentially at centers of area elements,
startin from (0,0) in Fig. 8. For the summation in
Eq. (27 ), . is known, in terms of the motion, at
points on th "planform and can be determined from the
condition T= 0 at points on the diaphragm region, shaded
in the figure. If the steps are performed in the proper
order, it is never necessary to solve any systems of
simultaneous equations or invert matrices.

Figure 9, adapted from Ref. 24, gives an example
of the AIC estimation of spanwise lift distribution at
a rectangular wingtip compared with series-expansion
results obtained by Watkins (Ref. 25). This figure
also demonstrates the improved accuracy which can be
achieved by introducing additional terms to account for
the singularity of upwash that exists Just off the
side edge where the diaphragm meets the wing (Ref. 24).
The inclusion of such singularities at leading and side
edges has been examined in detail. As a general conclusion,
it appears that comparable accuracy can be obtained in
the qp-distribution at less computational cost by
dispensing with these special terms and reducing the
area-element size relative to the wing dimensions.
Although mathematically less rigorous, this approach is
tentatively being taken with interfering surfaces as well.

Procedures for applying AIC's to nonplanar wings
and interfering wing-body systems have been outlined
by the author in an unpublished report (Ref. 26). Two
examples are presented here to illustrate the principles.
Consider first a single nonplanar surface of the sort
shown in Fig. 10, oscillating in a known mode of
vibration. From Eq. (9), vn will be spedified over the
planform area S. To assure no communication between
upper and lower surfaces, plane diaphragm areas are
associated with both the main wing and bent-down wingtip,
each extending out to meet the Mach cone from the vertex.
A vertical plane of symmetry is assumed at the vehicle
centerline, so that it is necessary to work over only
half the planform, making automatic provisions to account
for contributions from the opposite half. Clearly, the
two tips do not interact.
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Area elements like those in Fig. 8 are distributed
over the upper and lower sides of all lifting and diaphragm
regions, and oscillatory sources of constat amplitude
are placed on each element. Let Sj and S )denote
source-strength amplitude per unit area of the upper
and lower sides, respec ively, of the main wing and its
diaphragm. V4) and S(Iare corresponding strengths
for the tip and tip diaphragm. The physical conditions
to be met are 1.) that/vhave the correct values on
lifting area elements, and 2.) that both,and pressure
(4in this case) be continuous through each diaphragm
element. For example, the normal velocity at points on
upper wing area t induced by the sources onj can be
written

-- "(35)

Care must be taken with the definitions ofi/AAhere.
i7is the dimensionless chordwise distance aft from the
center of the "sending" J-element to the "receiving"
i-element, whereas and-O are dimensionless relative
distances measured tangential and normal to the plane of
wingtip J. Centers can usually be chosen so that-7is
always an integer, but/Z2will be irrational numbers
( is here negative). )

Equation (35) can be recast, in obvious matric
notation, as

= - s(36)

Subscript "W" on the left-hand column matrix indicates
that only area-element centers on the lifting portion
of the wing are included, while "WD" on the right means
that all wingtip and wingtip-diaphragm elements are
represented. The rectangular matrices on the right will
contain many zeroes due to the law of forbidden signals,
and there is an advantage to properly ordering the
computations. The normal velocity at points on area J
from the presence of sources on the upper side of the
wing and its diaphragm is
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(37)

where 1 are now referred to the wing's plane.
(,)Given the normal-velocity amplitudes n ) and

n (iproduced by the known motion of wing and tip,

the geometrical boundary conditions on these upper
lifting areas read

(- s-(38)

- OS (Is~~~wov/)~

- " 16 (39)
S711 -/W

There are two essentially identical relations for the
lower surface, superscripts (i) and (J) being replaced
with (1) and (A), respectively.

The kinematic conditions of continuity of normal
velocity across the two diaphragms read

g~j+ L~'~3) (40)

+ (41)

Here substitutions like Eqs. (36) and (37), modified to
refer to diaphragm rather than wing area elements, are
used to eliminate the interference matrices and write
Eqs. (40) - (41) entirely in terms of source strengths.
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An additional set of equations covering the
diaphragm centers is needed to construct a determinate
system. This is provided by the requirement of pressure
continuity, which is equivalent to '>-continuity in the
present case. Thus,

6 .- (" -

b)}[ 0 +{ )S'[] 6  ' 'W (42)

D ,/,0WWD

'e) (e) (43)

The total of the linear equations can now be
proved to equal the number of unknown area-element
source strengths. Experience at North American Aviation,
Inc., has shown that the foregoing computation can be
successfully mechanized and that skillful ordering
avoids the need for mtrix inversions. Once the unknowns
have been determined, equations lIke the following will
yield r on each side of each lifting surface:

£&~j~Ef 0i ]f?(7 +g M f() (44)
Pressures and generalized forces can be found from
1K - u 3 as for planar wings. An example of the
influence of tip deflection on lift and aerodynamic-center
location is shown in Fig. 11. The AIC predictions are
seen to follow measured trends quite satisfactorily.

As a second example, the hypersonic glider pictured
in Fig. 12 is selected. No detailed calculations have
yet been carried through on such an elaborate configuration,
which includes a body, but the procedure is not essentially
more complicated than for the nonplanar wing. The figure
shows, shaded, a suitable system of diaphragms to prevent
communication between the opposite sides of all thin surfaces.



-20-

As before, each side of each diaphragm and lifting region
would be overlaid with rectangular area elements. Similar
elements, also covered with constant-strength oscillating
sources, are affixed in a suitable pattern over the
body or fuselage. (The body base, being in a separated
flow region, must be treated empirically, but conditions
at this base cannot affect the loading forward.)

The illustrated fuselage is made up from essentially
planar areas. Each of these can be treated exactly like
one side of a lifting surface, with a flow-tangency boundary
equation being available to determine the source strength
on each area element. Were the body composed of curved
surfaces, however, the normal direction for each separate
planar element would have to be found and carried through
the computation. Airload determination would then be
somewhat more complicated, because each element over the
entire body will receive normal velocity contributions
from all others. There is no theoretical reason,
however, why such interference problems involving bodies
cannot be mechanized in a way that closely parallels
systems with lifting surfaces only. Finally, it should
be remarked that means for dealing with wakes arising
from subsonic trailing edges are well-understood and can
be deduced from the discussion and examples of Zartarian
and Hsu (Ref. 24).
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IV. Oscillatory Motion in Sonic Flight

As set forth in Ref. 11 and elsewhere, finite
lifting surfaces flying near M = 1 are not susceptible
of stead linearized treatment, but when k'> 1-Ml the
linearifferential equation

(Pj 4Fp-+O (45)

governs the oscillatory field. This observation suggested
to the author the possibility that the concept of AIC's
might be adapted to sonic flight. Should such an
approximation prove practical, the results can readily
be extended to cover the "transonic range" between, say,
M = 0.95 and 1.10 by means of Landahl's similarity law

The scheme which has undergone preliminary examination
io suggested in Fig. 13. Here square area elements, each
with constant oscillating source strength, are distributed
over the planform and diaphragm regions of a planar
wing. The Mach lines at sonic speed are parallel to
the y-axis, so the diaphragms theoretically extend to
infinity. One must therefore assume the normal velocity
%y,)M arbitrarily equal to zero for diaphragm elements
beyond a certain distance away from each wingtip. In
Fig. 14 some analytical results for 7 off a rectangular
tip in plunging vibration are plotted to suggest that
this assumption is probably quite acceptable and that
the necessary distance is a matter of a small number of
chordlengths. Figure 14 was computed incidentally,
using the closed-form solution for a 'quarter-infinite"
wing on x> 0, y ; 0 (Chap. VI of Ref. 11), from which
one can deduce

(flO 0) ('47

4_ _ ____ _ [E~ e6,_4

- ~~ ~ 2 rrX-- d'<
x2..y7x
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In Eq. (47) h is again the amplitude of vertical
displacement, and q is a dummy variable of spanwise
integration.

The formula for potential field which forms the sonic
counterpart of Eq. (26) is readily found from Ref. 11 to
read

(X, , Y,. ,

- lX _Y x [12(xr >i 2 y F)(8

77 Ex,- ,]_
e0

The dimensionless coordinates here are referred to side
b, of the square elements and k, = Yb /U, Under the
restriction-9 3 0, Eqs. (30) and (31J may be adopted
without change, and Eq. (27) is replaced byS(x, . ,) >' - __ -,Z l)-

bl /Z (49)

Except for easily-handled singular cases which occur
when;P = 0, the AIC's are as follows (superscript (1)
is used to denoteponic flow):

(i _ _1._ -:- . )

Z IMA

(50)

_; 1 ,,. - - I dr_

' I(4,

-,/- .(51)

-- (52)
.4m I f
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The notation adopted in Eqs. (50) - (52) for the Fresnel
integrals is most conveniently expressed as

X

771 (53)

All single integrations will have to be carried out
numerically, but computer subroTyines are already available
for the Fresnel integrals. 5 1 0 has already been
evaluated with enough accuracy and speed to assure the
feasibility of airload determinations for nonplanar
configurations.

The only numerical application of sonic AIC's known
at present to author consists of an effort by the Boeing
Company* to compare the surface distribution of ' against
the well-known exact solution for two-dimensional flow.
A few results are presented in Fig. 15. The wing, performing
plunging oscillations at k, = 0.05, is intended to have
infinite span, but the contributions to q- from points
more than 80 area elements distant from the chordwise
cross-section under consideration were neglected. As
the computation proceeds downstream, the effective
reduced frequency k (based on winW chordlength ahead)
increases while the 'aspect ratio of the rectangular
area by which the actual two-dimensional wing is approximated
decreases. Since there is no reason to anticipate
computational difficulty at higher k in this range, the
ultimate deviation between the exact and AIC results
can be attributed to the latter effect. Additional studies
show poorer agreement at very low values of k, where
linearized theory itself is questionable, but no practical
difficulty is anticipated either with the total number
of area elements or with excessive spanwise dimensions
of the region which must be covered with them.

Because of the tendency of strong shocks to form
at intermediate chordwise stations in transonic flow,
very severe limitations will have to be placed on
thickness- amplitude ratios and k will have to be
relatively large before the foregoing theory will be
valid for applications. It may, for example, prove
useful only for flutter analyses rather than loads
estimation. This is especially true on surfaces with

Work of Weatherill, as yet unpublished.
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nearly unswept leading edges. It is therefore important
for this speed regime that Landahl (Ref. 28) and others
are beginning to point the way toward suitable theoretical
refinements.

V. Remarks on Special Topics; Conclusions

a.) Arbitrary Time-Dependent Motion

Aerodynamic loada due to sinusoidal vibration of
interfering systems, predicted according to the methods
of this paper, have immediate utility in flutter analyses
and when determining the transfer functions of a flight
vehicle for such harmonic inputs as sinusoidal gust
velocity or displacement of the control surfaces.
Instances frequently arise, however, when it would be
advantageous to get loads directly for more general
time-dependent motions. At low frequencies, of course,
one can make the quasi-steady approximation and use the
foregoing theories with k = 0. In situations such as
rapid maneuvers, impulsive inputs, and transient structural
vibrations this is often not permissible.

The author has given considerable thought to the
engineering of unsteady aerodynamics for nonsinusoidal
phenomena. He has concluded that, when elaborate theory
is to be used in connection with high-speed digital
computation, the most efficient approach lies through
Fourier series decomposition of the inputs and
responses. First successfully mechanized by Bisplinghoff
et al. in 1949 (Ref. 29) for aircraft problems, this
scheme has appeared in a number of versions including
numerical evaluation of the Fourier integral by division
into finite frequency intervals and truncation. Whatever
the form, success seems to depend on retaining a rather
large number of terms in the summations, which is
something that can readily be systematized on a machine
like the IBM 7090. As an illustration, North American
Aviation* has been able to determine flexible-airframe
response to standardized design gust shapes, representing
the gust as a periodic input with quiewent intervals.
Three-dimensional unsteady aerodynamics were employed
in a seven-degree-of-freedom modal representation and
there was no excessive time required to sum 50 to 100
terms of a Fourier-series approximation to the input
and outputs.

* Work of Stenton and collaborators, as yet unpublished.
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b.) Intersecting Surfaces

In connection with adapting interference theory
to intersecting surfaces, an exhaustive study has been
carried out on exact linearized solutions in steady flow.
Some of the configurations analyzed are sketched in
Fig. 16. Included have been general cruciform combinations
according to slender-body theory, cruciform supersonic
delta combinations with subsonic and supersonic leading
edges according to conical flow theory, and slender-body
representations of V and T-tails, etc. In all cases,
no singular behavior is found near any corner where the
surfaces meet at an angle less than or equal to 1800.
Indeed, one can speculate on a general conclusion that
seems reasonable physically: regardless of flight Mach
number, the crossflow in the corner behaves like the
familiar, two-dimensional, incompressible corner-flow
solution r

To = s- (54)

being the angle and r, e polar coordinates at the
corner.

The v and w velocity components are proportional
to the power ( ' -1) of r, reducing to linear
dependence in a rectangular corner. The three-dimensional
disturbance pressure has an extreme value at the corner
and varies only slowly in the vicinity. Hence there
would seem to be no problem constructing suitable
pressure series, generalizing Eq. (18), when analyzing
such intersections, except at the outer side of a
V-tail.

c.) The Question of Nonlinearity

The relatively thick lifting surfaces of some entry
vehicles, the push to higher cruising Mach numbers, and
the appearance of heavily-loaded aircraft for flight
near the ground are among the many reasons why the
small-disturbance restriction on aerodynamic theory
is often intolerable. Nevertheless, linearized methods
like those described in this paper are already so
complicated as to inspire pessimism regarding refinements.
It is unwise to speculate too extensively about incomplete
developments, but it should be pointed out that certain
routes exist by which nonlinearity can be introduced,
both for planar wings and interacting surfaces.
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Consider, for instance, the ideas of Covert (Ref. 30)
and others regarding steady motion of supersonic wings.
Reference )0 demonstrates that second-order effects of
thickness in the near field are properly accounted for
if the disturbance potential q of the lifting flow is
made to satisfy the differential equation

(~/P-X -9 ± & 0(55)

where MT is the local surface Mach number due to the
thickness distribuon and ? is often a very small
parameter. Covert shows how P can be then built up
by superposition of source-like solutions depending on
MT rather than free-stream M. Thus one corrects for
variations in sound speed and second-order convection
effects, while still ignoring shocks which are third-
order.

There is no evident reason why Covert's scheme
cannot be adapted to nonplanar surfaces and to lifting
flows which are simple harmonic rather than steady.
An attempt to mechanize his results for digital
computation could constitute a fruitful undertaking.

Already referred to above was the suggestion
of Landahl (Ref. 28) for a refinement on linearized,
transonic theory that parallels Covert's development
very closely. Landahl focusseL on simple harmonic
motion and again demonstrates how the unsteady
perturbation potential can be found from a differential
equation whose coefficients depend on the local sonic
and particle speeds in the thickness flow. It might
be observed that, for numerical computation, there
is no reason why steady data to be incorporated in
such theories cannot be obtained experimentally.

For finite wings oscillating at subsonic Mach
numbers, the author is aware of no mathematically
consistent nonlinear analyses. This lack does not,
however, preclude an attempt to make semi-empirical
corrections for thickness and interference that might
extend the methods of this paper to more heavily-loaded
systems. The key idea is that proposed for two-
dimensional airfoils by Allen (Ref. 31). Once the
aggregation of vortices or acceleration-potential
doublets representing the lifting flow is determined
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by linearized procedures, one can compute the local
streamwise velocity ( VJ+ 9P ) at each such element.
The load would then be estimated by replacing U with
( V+ (P, ) in Bernoulli's equation or the Kutta-
Joukowsky theorem. This has produced significant
improvements in a number of steady cases and merits
further examination in connection with the interference
problem.

d.) Conclusions

When concluding, it seems necessary to point out
only that a pattern is emerging in the treatment of
three-dimensional loading of wings and interacting
systems by means of linearized aerodynamic theory.
A host of questionably consistent approximations are
being replaced by the systematic superposition of
appropriate singularities which, in the limit of an
infinite number of terms, would produce an exact solution.
The unifying tool is the high-speed digital computer.

Illustrative calculations have been presented or
referenced for subsonic, sonic and supersonic flight
Mach numbers, involving both steady and oscillatory
motion. The number and variety of these is deemed
sufficient to portend the widespread development of
these methods and their forthcoming availability as
another string for the aircraft designer's bow.
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Fig. 1 - Top and rear elevations of' a thin, nonplanar lifting
surface performing small unsteady motions normal to
a uniform subsonic or supersonic stream flowing
parallel to the x-coordinate. The image of this wing
in a ground plane or free water surface is shown.
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Fig. 2 - Steady lift-curve slopes of three rectangular, plane
wings as functions of distance above a ground plane
measured in wing chords. (Figures 2-7 refer to

constant density fluid.)
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Abscissa is distance above a ground plane measured
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kv=O,p 0 '

OREGIO b tSHiADED)

- N kG

' 'i ,{ SIDE

EDGE

region Of a planeP . t

tratng rghtV reiAs{p toieflow
%,eronhaindiagonals

suFe and ( # .Fig. ectn rectana-e (lines# S identify

elementary the 4ac of integers ae 8 t

paralel o ae Pairs enters O
respec and 3P~i s senals
"send"aA



-39-

0 AIC, WITH EDGE SINGULARITY
X AIC, WITHOUT EDGE SINGULARITY
-SERIES EXPANSION

3.2 ---- EXACT TWO-DIMENSIONAL

2.4

LR,L /A

1.6 
o

0.8 0
/ ,,,' XX "LTW -IREGION

0 0.2 0,4 0.F 0.8 1.0 1.2
DIMENSIONLESS DISTANCE
INBOARD FROM WING TIP

Fig. 9 - Four theoretical calculations of the dimensionless
lift per unit span in the wingtip region of a
plane, rectangular wing in vertical-translation
oscillation normal to a supersonic stream at M7=/2.
Reduced frequency based on semichord is4-/. 3.
AIC refers to method of velocity potential
aerodynamic influence coefficients with four
area elements along the chord.
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Fig. 10 - Top and rear elevations of a triangular
wing in supersonic flow with wingtip
folded downward. Shown shaded is a
suitable diaphragm area for isolating
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( Figure 11 has not yet

been released for publication. )

Fig. 11
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Fig. 12 - Typical configuration of a hypersonic
glider flying at low supersonic speed,
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lifting surface. Diaphragms are
shown shaded.
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Fig. 13 - A plane wing flying at sonic speed.
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coefficients. Under strictly linearized
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dashed line can affect the central point
identified by the integers m,n.
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Pig. 16 - Top and rear viewu of various intersecting
configurations whose loading can be
determined by numerical methods of this
paper. Several simple cases like these
have been analyzed in closed form for
comparison purposes.


